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Stochastic Processes of a Quantum State 
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Starting from a quantum state represented by its wave function ~(x), satisfying 
the Schrfdinger equation, we determine stochastic processes which provide the 
same time evolution for the probability density p(x)= I~(x)l 2. The transition 
probabilities of these processes are explicitly built in two circumstances: in the 
general case, but in an expansion in the time difference, and exactly, but for 
Gaussian processes. This allows us to discuss the correspondence between 
quantum states and stochastic processes, which appears not to be one-to-one, 
but, on the contrary, to associate with the same state an infinity of processes 
which differ in the fluctuation correlations of the random variable. 

1. I N T R O D U C T I O N  

Besides  the  o p e r a t o r  r ep resen ta t ion  of  q u a n t u m  mechan ics  (-Von 
N e u m a n n ,  1955), now become  usual ,  ano the r  r ep resen ta t ion  has also 
deve loped ,  in terms o f  s tochas t ic  processes  (Fenyes ,  1952, Nelson ,  1966). 
Cer ta in ly  the  absence  o f  a convinc ing  re la t ivis t ic  ex tens ion  and  the l ack  o f  
r ep re sen t a t i on  in the  m o m e n t u m  var iab le  make  its d o m a i n  o f  a p p l i c a t i o n  
r ema in  ra the r  restr icted.  None the less ,  the  s tochas t ic  r ep resen ta t ion  is not  
wi thou t  interest :  In  par t i cu la r ,  it a l lows one  to ex tend  the rea lm of  cer ta in  
c lass ical  concepts ,  l ike the  no t ion  o f  t ra jec tory ,  and  also,  by  giving back  to 
the q u a n t u m  probab i l i t i e s  an o rd ina ry  status,  to make  use o f  techniques  
which  have been  recent ly  deve loped  in this d o m a i n  ( I to  and  M c K e a n ,  1965 ; 
Jona -Las in io  et al., 1982). 

The p o i n t  of  view usua l ly  a d o p t e d  tends  to subst i tu te  the  s tochas t ic  
r ep resen ta t ion  for  the  o r d i n a r y  ope ra to r  represen ta t ion ,  and  na tu ra l ly  a ims 
at  get t ing r id  o f  the  latter.  Here ,  we shall  t ake  the  oppos i t e  po in t  o f  view: 
Assuming  tha t  a q u a n t u m  state and  its t ime evo lu t ion  are correc t ly  and  
comple t e ly  desc r ibed  by  its wave func t ion  and  the Schr/Sdinger equa t ion ,  
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we shall construct one, or several, stochastic processes which lead to the 
same predictions as quantum mechanics. Such an approach will have a 
double result: First, to concretely exhibit, by giving their transition prob- 
abilities, the stochastic processes one can associate with a quantum state, 
the existence of  which is assured by the stochastic differential and integral 
calculus (Yasue, 1982); then to analyze and discuss, from the side of  
quantum mechanics,  the hypotheses one must make in order to characterize 
the processes one wants to associate with quantum states. 

It will not be possible to give the exact expressions of  the transition 
probabilities, for any quantum state, but we give them in two complementary 
cases. A first part  gives the transition probabilities for any quantum state 
(within any potential), but to first orders in an expansion in hx  and At, 
where t and t + h t  (x and x + h x )  are the two times (positions) which 
enter into the conditional probabili ty P(x  + Ax, t + Atlx, t). Then, in a second 
part, an exact expression is given, restricted to Gaussian processes, which 
nonetheless covers not only the ground state of  the harmonic oscillator but 
also the Gaussian wave packet of  the free particle. These two studies then 
allow one to clarify the correspondence between stochastic processes and 
wave functions, and to discuss the supplementary assumptions one must 
make if one insists on the correspondence being one-to-one. 

2. E X P A N S I O N  OF T H E  T R A N S I T I O N  PROBABILITIES 

We shall only consider the case of  a single degree of freedom, in a 
one-dimensional  space for simplicity, describing the position of a particle, 
within a potential  V(x) .  All the information on the quantum state of  the 
particle is then contained in its wave function ~ ( x ) ,  which corresponds to 
two real fields: its modulus [~(x)l 2 gives the probabili ty density p(X) of the 
observable x, and its phase S(x) ,  with �9 = p 1/2 exp(iS/t i)  provides a velocity 
field: VS = my. The latter plays an intermediate role in determining the time 
evolution of the probabili ty density. Indeed, the Schr6dinger equation is 
equivalent to a system consisting of a kinematic equation, or continuity 
equation: 

( =_o ~ ~=o v - A =  
Ot Ox 

and a dynamical  equation: 

OS _ (VS )  2 ~l Ap~/2 +- V = 0  or 
Ot 2m 2m p~/2 

av h 2 ] V V --+/)VD----  {Apl/2 
2m2V = _ - -  Ot \ ' ~  l m 

(1) 

(2) 
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These equations thus fix the evolution of the probability density in a local 
way, and at second order (just like the Newton law, thus allowing time 
reversibility, i.e., invariance under time reflection t~ - t). It appears better 
to try to determine the processes, and their transition probabilities, which 
are likely to represent the time evolution of the probability density, first 
locally, that is in an expansion with respect to At, the time difference. The 
dependence on a finite number of spatial derivatives only also suggests 
looking for diffusion processes, that is, the restricted class of those which 
have only their first two moments of order At, the others being of higher 
order. If P(x',  t 'lx , t) is the conditional probability, the particle being at x 
at time t, for the particle to be at x' at time t', these conditions are 

(Ax)x = b(x, OAt+ o(At) 

(Ax2)x = 2v(x, t)At+ o(At) (3) 

(Ax~)x=o(At);  n > 2  

where 

(Ax")x = f Ax"P(x+Ax,  t+At]x, t) dAx 

and b(x, t) and v(x, t) stand for the drift and diffusion coefficients. These 
constraints already allow one to write a general expression (considering the 
simplest one), for the transition probability: 

In P(x + ax, t + Atlx , t) 
1 A x  2 • A X  3 e Ax 4 

In aAt--2---~t+ flAx +- ~ Ax2 +~4 = --2 --z~-f-+SAt+-2 At + o(At) 

(4) 

where a, fl, 3,, 8, e, r/ depend on x and t. 
If they are to correspond to Markov processes, the transition prob- 

abilities must satisfy a group composition law, also known as the Chapman-  
Kolmogorov equation: 

P(x", t"]x, t) = f P(x", t"]x', t ')P(x', t lx  , t) dx' (5) 

In particular, the expansion (4) must satisfy this equation for t"= t+At,  
t '=  t + At~2. On the other hand, being a probability, P must also be normal- 
ized and verify: 

f P(x', t'ix, t) dx'= 1 
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In the case of  locally Gaussian processes (y  = B = 0), it is easy to perform 
the computat ions and to obtain, besides the relations induced by (3), 

b 
a =2v ,  /3 = - -  

2v 

that the stability under convolution is equivalent to the condition: 

1 0 a  
~-V/3 

e -- 2o,20t 

and the normalization to the other condition: 

a = - 2 ( 3 2 + ~ )  

In the general case, it appears  more clever to make use of  another  equation 
which is the direct consequence of the previous ones, the Fokker-Planck 
equation (Schuss, 1980): 

OP 
- - + V ' ( b ' P ) - A ' ( v ' P )  = 0  [ b ' =  b(x', t'), v '= v(x', t')] (6) 
Ot' 

where b(x, t) and v(x, t) are the drift and diffusion fields defined in (3). 
Replacing P by its expansion in this equation, all its coefficients appear  to 
be determined by the first two moments:  

b 3 Vv 3 V ~  An 15 (roe) 2 
a = 2 v ,  /3 2v 4 v '  Y 2 a 2' r / = 2 a 2  4 a 3 

(7) 

- 2ce 2 at - 2  L2a /3 + ~  + e 

Higher-order terms in the expansion would be determined in exactly the 
same way, from the Fokker-Planck equation, and shown to depend on the 
drift and diffusion fields only. Note that the use of  the backward equation: 

OP+bVP+ y A P = 0  
Ot 

instead of the forward one (6), leads to the same results (7). 
The probabil i ty density p which evolves according to this process, also 

satisfies the same Fokker-Planck equation: 

O--~P + V ( b p ) - A ( v p ) = O  
Ot 

Consequently,  a necessary and sufficient condition for this evolution to 
be identical to that induced by the/continui ty equation, linked to the 
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Schr6dinger equation (1), is that the drift field of the process be given by 
the quantum state through the equation: 

V(,,p) 
b=  v 4 - ~  (8) 

P 

Hence, to any arbitrary choice of the diffusion field, there corresponds a 
drift field b(x, t), related to the quantum state through the only equation 
(8), and thus at least one process [satisfying hypotheses (3), (4)], which 
makes the probability density evolve according to the Fokker-Planck 
equation (6), and reproduces the time evolution of the Schr6dinger equation 
(v being given by the dynamical equation). This implies the following result. 
With any quantum state, described by a wave function satisfying the 
Schr6dinger equation, one can associate an infinity of processes, labeled 
by v(x, t), which reproduce correctly the time evolution of the probability 
density, as predicted by quantum mechanics. It is even possible to explicitly 
construct the transition probabilities of these processes, order by order in 
an expansion with respect to the time difference. 

A few remarks are in order. Hypotheses (3) and (4), on the nature of 
the processes, have the advantage of leading to a direct and easy construction 
of the transition probabilities, and this in a unique way, starting from the 
drift and diffusion fields. As no supplementary condition was required, this 
also shows that any arbitrary choice of these two fields leads to a good 
process. Nonetheless, let us note that hypotheses (3) and (4), although very 
useful, are not inescapable, and that there are in fact no arguments, inside 
quantum or classical mechanics, which can justify them. Thus one could 
envisage processes with no finite moments [for which b(x, t) and v(x, t) do 
not exist] or simply other stable laws than the Gaussian ones used in (4), 
which would still correctly represent the time evolution of the probability 
density. In the absence of any physical argument, it is for convenience that 
we shall restrict ourselves to hypotheses (3), (4) in the following. 

3. TRANSITION PROBABILITIES OF GAUSSIAN PROCESSES 

There is one favorable case, for which the expansions of the transition 
probabilities can be summed, and lead to exact expressions: that of locally 
Gaussian processes [y =7? = 0, the fluctuations can then depend on time 
only, u(t)], with a linear drift field, b(x, t)= a(t)x. These processes are 
associated with quantum states, for which the wave function is of the form 

1 [" x 2 i [m~'(t)L4 or(t) ] }  �9 (x, t )=  [2,rro_(t)]u4 e x p t - 4 - ~ + ~  x2+~(t) 

D -  1 [ x 2 ] 
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The continuity equation is then automatically satisfied: 

tr'(t) ( d o )  x o-'=--g; 

and the dynamical equation [with V(x)  = Vo + V2x 2] reduces to the following 
ordinary differential equations: 

/ '  , h 2 1\ [ ,  d~" -U U=a;) 

8m o ~2 2 \2-~/ \2or/ _1 V2 

This includes in particular two important physical cases: The ground state 
of the harmonic oscillator IV0=0, V2=mto2/2, t r ( t ) = h / 2 m w ]  and the 
Gaussian wave packet of the free particle: 

h 2 

Vo = V2 = O, 20-"o" - -  0 "12 - -  
m 2 

h2 ( t -  to) 2 
o - ( t ) = o - ( t o ) q  4 m  2 or(to) 

These processes can be constructed in the following way, which resembles 
the functional integration methods and has the merit of making connection 
with the previous expansions. The transition probabilities satisfy the group 
relation (5) and can thus be obtained through the following limit: 

P(x ' ,  t'lx, t) = lim *"Pi(Xi+l, ti+,Jx,, ti) 
noo 

where each Pi(x~+l, ti+llxi,  ti) is given by (a = tr '/2o-- v/o') 

pi(xi+l, t i W l l X i ,  J ti  ) = exp (-(Xi+l - x , -  aixiAt)g/{4viAt[1 + ( vJ2v i  + a,)At]}) 
{4~viS~t[1 + ( v j 2 v i  + ai)At]} 1/2 

at first order in At so that 

(xi+l-xi>x, = aixiAt [ai = a(ti)] 

, dr, l 
((Xi+,--Xi)2)~, = 2 v i A t + o ( A t )  vi = v(ti), ,,, =-~- (t,)J 

(Xi ~- x q- i ~ x  , t~ = t + iAt, x ' -  x =  nAx, t ' -  t=  nAt)  
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and P~(x', t'lx , t) satisfies the Fokker-Planck equation (6). As the drifts are 
linear, it is then possible to make use of the composition law of gaussians: 

e x p [ - ( x ' -  ax)212o -] 
p = [2qro.]lt2 , 

e x p [ - ( x " -  a' x') 2 / 2cr '] p r  
[2~-0-'] 1/2 

e x p [ - ( x " -  a"x)212tr "] 
p ' *p  _ [27ro.,,]1/2 

with a "=  a'a, tr"= o"+ a'2tr, and to obtain 

exp[-(xi- aix )2126",] 
P(x~, t, ix, t ) -  [ 2 ~ 3 , / z  

i 
ai = I] ( l + a k A t ) + o ( A t ) ,  

k=l 

~_._[/= ~ /"k - 
-2 2-~kAt+o(Ti t )  
ai  k=l 

The infinite limit then provides a Gaussian form for the transition prob- 
abilities: 

P(x' ,  t'lx, t ) -  exp{- Ix ' -~ t ( t ' ,  t)x]2126"( t ', t)) 
[27r@(t', t)] 1/2 

with 

a(t',t)=exp[It"a(s)ds ] = L o.(t) j r <~<,'~] ''= exp L_ jtP~"zx(S)ds] 

a(s, t) - - - - - ~  ds = J, or(s) (9) 

which satisfies the Fokker-Planck equation, as can be deduced from 

acr t) ot,6-(t', t ) -2~,( t ' )  
- - -  - a ( t ' )  
a(t ' ,  t) 2~(t ' ,  t) 

Ot~(t', t ) _  a(t),  O,6"(t', t) - 2v ( t )a ( t ' ,  t) 2 
a(t ' ,  t) tT-(t', t) 

(lO) 

Let us note that it would also have been possible to derive P(x ' ,  t'ix, t), by 
assuming a Gaussian form and requiring the Fokker-Planck equation, which 
leads to relations (10) and to their solution (9), or else, by requiring that 
p(x, t) be preserved by the process, which also leads to (9). 
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Using the explicit  solut ions just  obta ined,  one can first verify the validi ty 
of  the hypotheses  (3) which were supposed  to hold on the processes:  

(x'-x)~ = [t i( t ' ,  t) - 1]x = a(t)xAt+o(At) 

((x'--x)e)x = ~ ( t ' ,  t) + [ a ( t ' ,  t) -- 112x 2 = 2v(t)At+ o(At) 

( (x ' - -  x)~)x = [ a ( c ,  t) - 1]{3c~(t', t) + [ ~ ( t ' ,  t) - 112x2}x = o(At) 

Moreover ,  these processes  also cor respond  to mart ingales:  

(X~)x X 

d( t ' ,  to) -- a( t ,  to) 

where  ~ is the solut ion of  (10). Let us also s imply  remark  that  the invar iant  
dis t r ibut ion p also plays the role of  an at tract ive point ,  in the course  of  
t ime (for infinite t imes).  Indeed ,  the i terated act ion o f  the process  on a 
given initial dis t r ibut ion (Gauss ian) :  

exp[-  (x - x*)2/2,7 *] 
p*(x, to)- ]-2~JTo.o~]l/2 

brings it c loser  to the invar iant  distr ibution:  

p*(x, t) = f P(x, t]Xo, to)p*(Xo, to) dxo 

e x p { - [ x  - x*(  t)]2/2(r* (t)} 
--  [ 2 ~ O r , ( t ) ] 1 / 2  

x*( t )  = a( t ,  to)X*, cr*(t) = 6"(t, to)+a(t, to)2O'o * 

verifies 

x*(t) x* [' ,'(s) 
o.0).2- o.(~,/2 exp{-[V(t)- ",'(to)]}, V(t) = .  ~ ds 

o-*~,)-  o-~t) [~o* - ~(t0)] 
or(t) [. o'(to) j exp{-2[y(t)-7(to)]} 

The size of  the diffusion coefficients v( t)  thus cor responds ,  for  the different 
equivalent  processes ,  to different speeds  of  a t t ract ion by the invar iant  
dis t r ibut ion p (one should  limit onesel f  to diffusion coefficients which satisfy 

~ ' v ( s )  ' - '~ 
d* , +oo) 
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With the help of  the exact expressions, one can also compute the fluctuations 
and their correlations: 

( [x(  t + At )  - x(  t)]2)x,t = 2 ~ , ( t )At  + o(At)  

h 2 At 2 
([x( t + At) - (x(t))] 2) = o'( t + At) = ~r( t) q 4m 2 o'( t) 

The latter have for minimum [when tr(t) varies]: At h/2m. Note that this 
result remains valid for any diffusion function p(t). 

The different kinematic elements of  the process can also easily be 
computed: 

- x - -  t )  = x ,  x - - x 
p ~r 

( D 2 D * ) 2 x = r [ o " ' '  [0" '2"] ( D - D * '  2 u 2 

which confirms (the definitions will be recalled in the next part of  the paper) 
that the Schr6dinger equation is equivalent to a Newton equation, where 
the force is given by 

F = - 2 V 2 x  

and the acceleration by 

a =  - -  x + A  x 

with 

~2 

A(t) p2(t) = 4m 2 

One will have noticed a common feature of  the expansions and exact 
expressions, for the transition probabilities of  the processes one can associ- 
ate with a quantum state: the presence of an arbitrary function, related to 
the diffusion coefficient of  the process, and as a consequence, of  an infinity 
of equivalent processes for the same state. This property is discussed in 
detail in the next part. 

4. N O N U N I C I T Y  OF T H E  PROCESSES 

The presence of several (if not an infinity) of  equivalent processes, 
from the point of  view of quantum mechanics, is puzzling, especially if one 
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wants to identify them with a real physical phenomenon.  The crucial 
question is then: are there supplementary assumptions, which would allow 
one to limit to a unique process the class associated with a quantum state, 
and which could be justified by physical arguments, and confronted with 
experiment? 

The way followed by stochastic mechanics (Nelson, 1966), consists in 
giving a physical interpretation to the diffusion constant u, and then con- 
sidering the dynamical  equation (2) as an extension of the classical Newton 
law (F  = ma, with F the force, rn the mass, and a the acceleration). In this 
approach,  the diffusion coefficient is taken to be constant, independent  of  
space and time, and equal to a universal constant: h/2m. This indeed assures 
the unicity of  the process [assuming also hypotheses (3), (4)]. Nonethelqss, 
one must admit  that, up to now, no experimental fact has come to justify 
such an assumption. One intuitive argument consists in identifying (Nelson, 
1983) the correlations of  the fluctuations: 

([x(t + At) -- x(t)]2)~,, 
lim 
~t~o At 

and the fluctuations of  the random variable themselves: 

([x(t  + At) - (x( t))] 2) 
lim 
~t~o At 

The latter are given by the probabili ty density only, taken at different times, 
and are effectively determined by quantum mechanics. In the case of  a free 
particle, they are easily computed,  as was done in the previous section, and 
can be related to the universal constant h/2m. But, as can he seen on the 
explicit example of  the Gaussian free wave packet, the argument which 
identifies them with the correlations in fluctuation, or the diffusion constant, 
is incorrect. One must unfortunately accept the evidence, that whatever the 
diffusion coefficients are, all the corresponding processes lead to the same 
density probabilities, and thus to the same fluctuations of  the random 
variables, even at different times. The previous argument thus cannot be 
used to fix the value of  the diffusion coefficient, and consequently the 
process. One should also remark that, in the ordinary framework of quantum 
mechanics, the correlations in fluctuation are not experimentally accessible. 
Indeed, the latter require two successive measurements of  the variable, (here 
of  position), at different times and on the same state. But no such measure- 
ments can be done without perturbing the state in between. Hence, the 
hypotheses of  spatial and temporal  homogeneity of  the diffusion coefficient, 
and afortiori its universal value h/2m (Davidson, 1979) can find a justifica- 
tion only by leaving the f ramework of quantum mechanics, and by relying 
on experimental evidence of  a new type. 
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One merit of stochastic mechanics it to deduce the dynamical equation 
(2) from the Newton law. This derivation is accomplished in two steps, by 
first achieving a stochastic extension of classical kinematics, and then by 
replacing in the Newton law, the acceleration by its stochastic extension. 
Thus the fluctuations on the position lead one to introduce two different 
time derivatives, a forward one, D = (8/00 + bV + vA, and a backward one, 
D* = (o/Ot)+b*V- vA [where b* = b-2V(vp)/p], which result in two 
different velocities b = Dx, and b* = D'x, and then in four different acceler- 
ations DDx, DD*x, D*Dx, D*D*x. In order to apply the Newton law, 
one has then to choose one acceleration among four. Recalling reversibility, 
that is symmetry under time reversal, one can reduce the choice to a linear 
combination of only two of them: 

a = V - T -  ) x (11) 

Remarkably enough, for A = -1  and v = h/2m, the Newton equation iden- 
tifies with the dynamical equation (2). However, this correspondence is not 
sufficient in itself to justify simultaneously both choices for A and v. Indeed, 
the identification of the Newton law with the dynamical equation occurs 
as soon as the following relation between A and v is satisfied: 

( h )  2V[pV(vp /p ) ]  (12) 
a = -  ~m V[vpV(V(~p)/p)]  

Hence, for any diffusion field v(x, t) the Schr6dinger equation identifies 
with the system consisting in the continuity equation and the Newton law, 
if one correctly defines the acceleration a, accn~ding to (11) and (12). Sure 
enough, several objections can be made against such an ad hoc choice of  
the acceleration. Unfortunately, these do not hold, as we show now. For 
instance, one could require that the definition of the acceleration be uni- 
versal and do not depend on the quantum state, as is the case here for A 
does depend a priori on the probability density p. First of  all, one should 
note that even in the case of A being independent of p, the acceleration 
does still depend on it, through the dependences of D and D*. But anyway, 
such a definition could apply to pure quantum states only. Indeed, it has 
been shown that in the case of mixed quantum states, one can preserve the 
equivalence between the Schr~dinger equation and the Newton law, only 
at the price of  a redefinition of the acceleration, which then depends on 
the state in an irreducible way (and even, more precisely, on the pure state 
components of  the mixture) (Jaekel and Pignon, 1984). In any case, even 
a universal definition limited to pure quantum states (which, by the way, 
would require the introduction of a new concept, alien to classical 
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mechanics), would not be sufficient to fix the value of A equal to -1 .  Indeed, 
there still remain pure temporal  dependences for A and v, being fixed in a 
universal way ( independent  of  the state) through the relation: 

A(t)v2(t)=- ~m 

This is precisely the situation which has been described in the previous 
section on the explicit example of  the Gaussian wave function. 

The problem of  nonunicity of  the process one can associate with a 
quantum state, thus reflects itself in the arbitrariness of  two choices, which 
are linked together (of  diffusion coeff• and of acceleration). Moreover,  
both quantities are related to the time correlations of  the variable (here the 
position) and cannot be obtained, in the f ramework of quantum mechanics, 
without being destroyed. 

5. C O N C L U S I O N  

It is thus possible to associate with each quantum state, that is with 
the same wave function, a large infinity (corresponding to an arbitrary 
function of  space and time) of  different stochastic processes, which all lead 
to the same time evolution for the probabili ty density. On the other hand, 
the wave function constitutes, up to now, all the information one needs on 
the quantum state to account for all the experimental facts which depend 
on the latter. Unless experiments of  a new type, like a (even indirect) 
measurement  of  the fluctuation correlations o~f the process are made, which 
would go beyond description by quantum mechanics, nothing can allow 
one to distinguish one process among the others, and to give it the status 
of  real process. Presently, one can just consider all these processes on the 
same footing, and consequently, as virtual processes (maybe, like those 
occurring in Feynman diagrams). 

We have not insisted on the hypotheses which bear on the existence 
of the first two moments  of  the transition probability. The impossibility of  
physically justifying these hypotheses, moreover  indicates that the class of  
processes one can associate with a quantum state, could be even larger than 
the one exhibited here. Such a proliferation of the processes looks disturbing. 
One way to escape it, would be to isolate universal properties, which are 
shared by all the processes, and to relate them to the wave function of the 
quantum state. The attraction property shown in part 3 by the probabili ty 
density, with its time evolution, might not be restricted to Gaussian cases 
and would then reinforce the idea that the quantum wave function describes 
the universal limit of  a large class of  conservative processes. 
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